SPECIFICATION AND APPLICATION OF VOID SPACES BELOW CONCRETE FOUNDATIONS

Document no: FPA-SC-11
Developed by: FPA Structural Committee
Committee chairs: Main Committee - Ron Kelm, P.E.
Subcommittee - Michael Skoller, P.E.
Subcommittee: Mike Turner, Mohamed Moussaoui, Mari Mes, Al Maceiras, Jim Austin, Karl Breckon
Presented by: Michael Skoller, P.E.,
National Structural Engineering, Inc.
Presented to: Foundation Performance Association
Presented on: 9 January 2008
Specification and Application of Void Spaces Below Concrete Foundations

Table of Contents

1.0 INTRODUCTION .. 6
2.0 VOID SPACE SYSTEM TYPES 7
 2.1 DEGRADABLE VOID SPACE (CARTON FORM) SYSTEMS ... 7
 2.2 COLLAPSIBLE VOID SPACE SYSTEMS 7
 2.3 NON-COLLAPSIBLE VOID SPACE SYSTEMS 7
3.0 DESIGN OF VOID SPACE SYSTEMS 8
 3.1 VOID SPACE (CARTON FORM) SYSTEMS UNDER SLAB AREAS ... 8
 3.2 VOID SPACE SYSTEMS UNDER GRADE BEAMS 9
 3.3 DESIGN CONSIDERATIONS 10
 3.3.1 Earth-Formed Beams 11
 3.3.2 Degradable Carton Forms (under Slab Areas, grade beams, and pier caps) 11
 3.3.3 Collapsible Void Space Materials (under grade beams only) 11
 3.3.4 Non-Collapsible Void Space Materials (under grade beams only) 11
 3.4 DESIGN LOADS ... 12
 3.5 FORMS AROUND THE TOPS OF THE PIERS 13
 3.6 DESIGN PROCEDURE ... 14
 3.7 CONSIDERATIONS FOR UNDER-SLAB UTILITIES 14
4.0 SPECIFICATIONS FOR VOID SPACE MATERIALS 15
 4.1 SPECIFICATIONS FOR ALL VOID SPACE MATERIAL TYPES 15
 4.2 DEGRADABLE VOID SPACE (CARTON FORM) MATERIALS 16
 4.3 COLLAPSIBLE VOIDS (UNDER GRADE BEAMS ONLY) 17
 4.4 NON-COLLAPSIBLE VOID SYSTEMS (UNDER GRADE BEAMS ONLY) 18
 4.5 TRAPEZOIDAL CARTON FORMS 18
 4.6 TESTING REQUIREMENTS 19
 4.7 SUBMITTALS .. 20
5.0 HANDLING AND INSTALLATION OF VOID SPACE SYSTEMS 20
 5.1 ONSITE VOID SPACE SYSTEMS PROTECTION 20
 5.2 INSTALLATION ... 20
6.0 REFERENCES .. 22

Michael Skoller, National Structural Engineering, Inc.
PRESENTATION OUTLINE

1. INTRODUCTION
2. VOID SPACE SYSTEM TYPES
3. ADVANTAGES/DISADVANTAGES OF VOID SPACE SYSTEMS
4. DESIGN CONSIDERATIONS
5. DESIGN PROCEDURE
6. ONSITE PROTECTION & INSTALLATION
7. PHOTOGRAPHS
VOID SPACES

Gaps designed to provide a buffer zone between expansive soils and a concrete foundation in order that **heave** can occur without imposing detrimental uplift pressures to the foundation.

Example of soil expansion one month after pour.
HEAVE....

The upward movement of an underlying supporting soil stratum due to the addition of water to an unsaturated expansive soil within the moisture active zone.

Commonly occurs within clayey soils with an available moisture source.

Without a void space, this movement may be detrimental to foundations and superstructures.
How Heave Happens:

YEAR # 1
NEW TREE PLANTED

ROOT BALL

UNIFORM MOISTURE IN SOIL
How Heave Happens:

YEAR # 30
TREE MATURED

SUBSIDENCE OF GROUND SURFACE DUE TO SOIL SHRINKAGE

DESIICCATED ROOT ZONE

MOISTURE MIGRATION
How Heave Happens:

YEAR # 31
TREE REMOVED / CONSTRUCTION STARTED

FOUNDATION
FILL ADDED FOR LEVELING
ROOT CHANNELS REMAIN
MOISTURE MIGRATION CONTINUES

SURFACE MOISTURE FROM RAINFALL
TRANSPIRATION STOPPED
How Heave Happens:

YEAR # 32+
SOIL REHYDRATES AND HEAVES
1. INTRODUCTION

2. VOID SPACE SYSTEM TYPES

3. ADVANTAGES/DISADVANTAGES OF VOID SPACE SYSTEMS

4. DESIGN CONSIDERATIONS

5. DESIGN PROCEDURE

6. ONSITE PROTECTION & INSTALLATION

7. PHOTOGRAPHS
VOID SPACE SYSTEM TYPES

DEGRADABLE VOID SPACE SYSTEMS

• **Only** type to be used under slab areas

• Wax coated; will gradually absorb ground moisture and lose strength or degrade over a period of time

• Soil can heave into the resulting void space

• Material, such as gravel or plastic sheathing, under carton forms should not be used because a capillary break may occur preventing moisture migration to the degradable carton forms.

COLLAPSIBLE VOID SPACE SYSTEMS

NON-COLLAPSIBLE VOID SPACE SYSTEMS
VOID SPACE SYSTEM TYPES

DEGRADABLE VOID SPACE SYSTEMS

COLLAPSIBLE VOID SPACE SYSTEMS

• Non-degradable material designed to collapse under heave pressures greater than the weight of the foundation and superstructure dead loads

• Will not collapse during foundation make-up and placement

• Not to be used under slab areas.

NON-COLLAPSIBLE VOID SPACE SYSTEMS
VOID SPACE SYSTEM TYPES

DEGRADABLE VOID SPACE SYSTEMS

COLLAPSIBLE VOID SPACE SYSTEMS

NON-COLLAPSIBLE VOID SPACE SYSTEMS

• Non-collapsible material designed to maintain its original structural integrity throughout life of the foundation
• Built-in void space
• Materials include fully wax impregnated corrugated paper, Styrofoam, plastics and other non-degradable products
• Use under grade beams only
DEGRADABLE AND COLLAPSIBLE VOID SPACE SYSTEMS
NON-COLLAPSIBLE VOID SPACE SYSTEMS

Void space, size dependent on width of vertical supports and PUM

Grade Beam

3 Styrofoam pieces glued together

Michael Skoller, National Structural Engineering, Inc.
1. INTRODUCTION
2. VOID SPACE SYSTEM TYPES
3. ADVANTAGES/DISADVANTAGES OF VOID SPACE SYSTEMS
4. DESIGN CONSIDERATIONS
5. DESIGN PROCEDURE
6. ONSITE PROTECTION & INSTALLATION
7. PHOTOGRAPHS
VOID SPACE SYSTEM
(DEGRADABLE CARTON FORMS)
UNDER SLAB AREAS

Advantages

- Reduces foundation heave
- Elevated slab areas are less affected by surface water prior to concrete placement
VOID SPACE SYSTEM (DEGRADABLE CARTON FORMS) UNDER SLAB AREAS

Disadvantages

• Creates path for water to migrate below slab
• Termites may be attracted to carton forms when paper products are used
• Increases design and construction cost
• Concrete may enter carton form during placement if grade stakes are driven through carton forms
VOID SPACE SYSTEMS UNDER GRADE BEAMS

Advantages

• Allows total isolation of the upper foundation from the active soils

• Potential Upward Movement of foundation will be reduced, assuming sufficient void space is maintained and deeply supported foundations are founded below the moisture active zone.
VOID SPACE SYSTEMS UNDER GRADE BEAMS

Disadvantages

• Void space below beams usually collect water
• Prolongs installation time
• Increases cost of design and construction
• Due to inclement weather conditions, the entire foundation makeup may need to be removed in order to replace damaged or wet carton forms
NO VOID SPACE UNDER GRADE BEAMS

Design procedure:

a) Determine the maximum uplift forces of the soil and compare the capacity of the grade beams with that force applied to the bottom of the grade beams. If the dead load on the beam is equal to or greater than the uplift force, no additional design is necessary. If the uplift force is greater, the grade beams need to be designed for this upward force minus the dead load, and the piers should then be designed for the proper depth below the moisture active zone to resist this uplift.
NO VOID SPACE UNDER GRADE BEAMS

b) There are two uplift forces to be considered: bearing on the bottom of the grade beams and side friction between the soil and sides of the beam. One method of determining these forces is to provide swell tests to determine the surcharge needed for zero swell and use the shear capacity of the soil for the side friction. The actual determination of these forces is not in the scope of this document.

c) It would be a reasonable assumption that, if the above items were accounted for and the actual forces are the same or lower than dead loads, a void space would not be necessary under the grade beams.
NO VOID SPACE UNDER GRADE BEAMS

d) If the net uplift pressures on the grade beams are greater than the dead weight of the foundation and superstructure one of two design choices should be made:
1) Design the foundation as a stiffened slab per PTI, BRAB or WRI. Movement may occur.
2) Use a void space under the grade beams in conjunction with a void space under the slab area.
1. INTRODUCTION
2. VOID SPACE SYSTEM TYPES
3. ADVANTAGES/DISADVANTAGES OF VOID SPACE SYSTEMS
4. DESIGN CONSIDERATIONS
5. DESIGN PROCEDURE
6. ONSITE PROTECTION & INSTALLATION
7. PHOTOGRAPHS
DESIGN CONSIDERATIONS

• In order to determine the design height for degradable Carton Forms & Collapsible Void Space Materials:
 - deformed/collapsed height of carton form
 - void space height required by geotech engineer

Design Height of Void Space

• Non-Collapsible Void Space Materials: Excavated void space should be large enough to compensate for the volume of the permanent void space material and the heaved soil
<table>
<thead>
<tr>
<th>CRITERION</th>
<th>CONDITION¹, ³</th>
<th>VOID SPACE SYSTEM MATERIAL TYPE¹</th>
<th>DEGRADABLE</th>
<th>NON-DEGRADABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COLLAPSIBLE²</td>
<td>NON-</td>
<td>COLLAPSIBLE²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Initial Ultimate Uniform Load Collapse Pressure (as shipped, dry) [PSF]</td>
<td>Slabs with (t \leq 12)” thick</td>
<td>600</td>
<td>Do not use</td>
<td>Do not use</td>
</tr>
<tr>
<td></td>
<td>Slabs with (t > 12)”</td>
<td>456 + 12t</td>
<td>Do not use</td>
<td>Do not use</td>
</tr>
<tr>
<td></td>
<td>Beams with (d \leq 36)”</td>
<td>1000</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Beams with (d > 36)”</td>
<td>568 + 12d</td>
<td>168 + 12d</td>
<td>168 + 12d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Initial Ultimate Uniform Collapse Pressure (as shipped, dry) [PSF]</td>
<td>Slabs with (t \leq 12)” thick</td>
<td>1500</td>
<td>Do not use</td>
<td>Do not use</td>
</tr>
<tr>
<td></td>
<td>Slabs with (t > 12)”</td>
<td>1356 + 12t</td>
<td>Do not use</td>
<td>Do not use</td>
</tr>
<tr>
<td></td>
<td>Beams with (d \leq 36)”</td>
<td>1500</td>
<td>1000</td>
<td>No limit</td>
</tr>
<tr>
<td></td>
<td>Beams with (d > 36)”</td>
<td>1068 + 12d</td>
<td>568 + 12d</td>
<td>No limit</td>
</tr>
<tr>
<td>Maximum Final Ultimate Uniform Collapse Pressure (at 100% humidity for 7 days) [PSF]</td>
<td>Slabs with (t \leq 12)” thick</td>
<td>12t</td>
<td>Do not use</td>
<td>Do not use</td>
</tr>
<tr>
<td></td>
<td>Slabs with (t > 12)”</td>
<td>12t</td>
<td>Do not use</td>
<td>Do not use</td>
</tr>
<tr>
<td></td>
<td>Beams with (d \leq 36)”</td>
<td>12d</td>
<td>1000</td>
<td>No limit</td>
</tr>
<tr>
<td></td>
<td>Beams with (d > 36)”</td>
<td>12d</td>
<td>568 + 12d</td>
<td>No limit</td>
</tr>
</tbody>
</table>

Notes:
1. \(t\) = slab thickness [inches]; \(d\) = grade beam depth [inches], measured from the top of the slab to the bottom of the beam
2. The foundation design engineer should verify the maximum ultimate collapse pressure.
3. The slab values should also be used for pier caps.
DESIGN CONSIDERATIONS FOR THE FORMS AROUND THE TOPS OF PIERS
FORMS AROUND THE TOPS OF PIERS

Advantages

• Reducing contact area between top of pier and soil reduces potential uplift pressures
• Less concrete waste

Disadvantages

• Additional cost of materials
• Additional labor to install
FORMS AROUND THE TOPS OF PIERS

RIGHT WAY
FORMS AROUND THE TOPS OF PIERS

WRONG WAY

Michael Skoller, National Structural Engineering, Inc.
FORMS AROUND THE TOPS OF PIERS
VOID SPACE SYSTEM
MANUFACTURER TESTING
VOID SPACE SYSTEM TESTING

For a void space system to be considered acceptable under this document, it should be tested by an independent laboratory in accordance with the following minimum requirements:

a) Minimum of 3 randomly selected test samples
b) Minimum length = 2 times depth of test sample
c) Repetitive cell pattern of at least two adjacent cells in each horizontal direction
d) Test pressure at failure is pressure where either deflection increases without additional pressure, or total vertical deformation > 5% of original vertical dimension
e) All samples fail at pressure ±10% of average failure pressure
f) Test pressure shall be uniformly applied to test sample
1. INTRODUCTION
2. VOID SPACE SYSTEM TYPES
3. ADVANTAGES/DISADVANTAGES OF VOID SPACE SYSTEMS
4. DESIGN CONSIDERATIONS
5. DESIGN PROCEDURE
6. ONSITE PROTECTION & INSTALLATION
7. PHOTOGRAPHS
VOID SPACE SYSTEM DESIGN PROCEDURE

a) A geotechnical investigation and report should be in accordance with the requirements of Document No. FPA-SC-04, *Recommended Practice for Geotechnical Explorations and Reports* and / or other guidelines acceptable to the foundation design engineer.

b) The foundation design engineer decides whether or not to utilize a Void Space System based on recommendations from the geotechnical report and discussions with the client.
VOID SPACE SYSTEM DESIGN PROCEDURE

c) The geotechnical report shall include recommendations needed by the foundation design engineer to design the Void Space System, in particular the net height of Void Space (PUM) required below the bottom of the slab and grade beams.

d) The foundation design engineer specifies the Void Space height and Void Space System on the design drawings and / or specifications based on recommendations of the net height of Void Space (PUM) recommended by the geotechnical engineer.
CONSIDERATIONS FOR UNDER-SLAB UTILITIES
UNDER-SLAB UTILITY CONSIDERATION

--Piping must remain stationary with respect to the slab--

Michael Skoller, National Structural Engineering, Inc.
UNDER-SLAB UTILITY CONSIDERATION
--Piping must remain stationary with respect to the slab--

Rebar or Cable

Slab and beams

Form board

Soil

Degradable Void Space System Material

Floor Drain and Pipe

Pipe Hanger Assembly

Piping May Be Subjected To Bending

Michael Skoller, National Structural Engineering, Inc.
TRAPEZOIDAL CARTON FORMS
TRAPEZOIDAL CARTON FORMS

- Inappropriate for void space system
- Designed to resist lateral pressures, but as concrete on the sides is often thin and unreinforced, pressures are not resisted
- Lack sufficient interior vertical supports
Trapezoidal carton forms that lack continuous concrete to function as a soil retainer at the bottom of grade beams
1. INTRODUCTION
2. VOID SPACE SYSTEM TYPES
3. ADVANTAGES/DISADVANTAGES OF VOID SPACE SYSTEMS
4. DESIGN CONSIDERATIONS
5. DESIGN PROCEDURE
6. ONSITE PROTECTION & INSTALLATION
7. PHOTOGRAPHS
VOID SPACE SYSTEMS
ONSITE PROTECTION

• Store materials according to manufacturer’s recommendations

• Store degradable Systems in an enclosed container or storage trailer

• Protect Systems against the elements and other means of damage prior to installation

• Do not install or use water sensitive void space materials that have been damaged

Michael Skoller, National Structural Engineering, Inc.
VOID SPACE SYSTEMS INSTALLATION

a) Assemble products as recommended by the manufacturer to develop designed strengths.

b) Degradable carton forms should have access to moisture in order to properly deteriorate. Do not wrap degradable forms in polyethylene. A moisture retarder (polyethylene) should not be used below degradable carton forms because this may not allow deterioration from the subgrade below.

c) Place a protective covering over Void Space Systems as necessary to distribute working load, bridge small gaps, and protect the materials from puncture and other damage during concrete placement. A protective fiberboard may be used on top of all Void Space Systems, which helps distribute concentrated construction loads from rebar bolsters, personnel, etc. Do not use protective fiberboard less than 1/8”, plywood or OSB board.
VOID SPACE SYSTEMS INSTALLATION

Placement of fiberboard coverings

Michael Skoller, National Structural Engineering, Inc.
VOID SPACE SYSTEMS INSTALLATION

d) Foundation design engineer should have an active role in the construction procedures.

e) Use end caps to seal exposed ends adjacent to piers.

f) Protect degradable systems from moisture. Replace wet or damaged materials before placing concrete.
VOID SPACE SYSTEMS INSTALLATION

- Ensure positive drainage away from the foundation
- Systems should be properly placed and anchored
- Moisture retarder may be placed over top of carton forms. Collapsible void systems may be wrapped with moisture retarder as long as the entrapped air has a method of escaping.
INSTALLATION COMMENTS/CONCERNS

• Selection of paper type
• Void space system minimum/maximum strength (psf)
• Pre-manufactured System eliminates field cutting
• Fiberboard protection for System
• Minimize openings to prevent concrete from flowing into System
• Concentrated loads Systems such as from rebar chairs
• Moisture retarder in wrong location
• Onsite weather protection
• Size of concrete pour
• Labor force (size and skill level)
• Weather conditions
• Insufficient soil moisture for degradable System
1. INTRODUCTION
2. VOID SPACE SYSTEM TYPES
3. ADVANTAGES/DISADVANTAGES OF VOID SPACE SYSTEMS
4. DESIGN CONSIDERATIONS
5. DESIGN PROCEDURE
6. ONSITE PROTECTION & INSTALLATION
7. PHOTOGRAPHS
CARTON FORMS BENEATH BEAMS

Michael Skoller, National Structural Engineering, Inc.
CARTON FORMS BENEATH BEAMS

Michael Skoller, National Structural Engineering, Inc.
CARTON FORMS BENEATH WALL

Michael Skoller, National Structural Engineering, Inc.
CARTON FORMS BENEATH SLAB & BEAM

Michael Skoller, National Structural Engineering, Inc.
PRE-MANUFACTURED RADIAL CARTON FORM AT PIER INTERSECTION
ONE-PIECE PIER CARTON FORM

Michael Skoller, National Structural Engineering, Inc.
TWO-PIECE PIER CARTON FORM

Michael Skoller, National Structural Engineering, Inc.
RADIAL SHAPES ARE FIELD-CUT AND PATCHED

Michael Skoller, National Structural Engineering, Inc.
EXPOSED CARTON FORM INTERIOR
BY FIELD CUTTING

Michael Skoller, National Structural Engineering, Inc.
FIELD-CUT PIECES AROUND PIER

Michael Skoller, National Structural Engineering, Inc.
WASTED CARTON FORM MATERIAL

Michael Skoller, National Structural Engineering, Inc.
FIELD-CUT CARTON FORMS RANDOMLY PLACED AROUND PIER

Michael Skoller, National Structural Engineering, Inc.
PRE-MANUFACTURED CARTON FORMS FOR PIERS AND GRADE BEAMS
SLAB AND PIER CARTON FORMS
VOIDED BASEMENT SLAB WITH FIBERBOARD

Michael Skoller, National Structural Engineering, Inc.
FIBERBOARD BENEATH POST-TENSION CABLES

Michael Skoller, National Structural Engineering, Inc.
FIBERBOARD BENEATH POST-TENSION CABLES

Michael Skoller, National Structural Engineering, Inc.
FIBERBOARD BENEATH POST-TENSION CABLES

Michael Skoller, National Structural Engineering, Inc.
VOIDED SLAB SECTIONS COVERED WITH FIBERBOARD

Michael Skoller, National Structural Engineering, Inc.
VOIDED SLAB SECTIONS COVERED WITH FIBERBOARD AND MOISTURE RETARDER

Michael Skoller, National Structural Engineering, Inc.
VOIDED SLAB SECTIONS COVERED WITH MOISTURE RETARDER

Michael Skoller, National Structural Engineering, Inc.
RESIDENTIAL VOIDED FOUNDATION SLAB COVERED WITH MOISTURE RETARDER
DEGRADABLE CARTON FORMS AND TRAILER FOR STORAGE OF FORMS PRIOR TO USE

Michael Skoller, National Structural Engineering, Inc.
IN CONCLUSION

- USE VOID SPACE SYSTEMS WHEN HEAVE IS A CONCERN
- GEOTECHNICAL AND STRUCTURAL ENGINEERS BOTH RESPONSIBLE FOR THE DESIGN OF VOID SPACE SYSTEMS
- SPECIFY CARTON FORMS THAT HAVE BEEN INDEPENDENTLY TESTED ACCORDING TO THE PROCEDURES IN THIS PAPER
- KEEP DEGRADABLE FORMS DRY AND ALL FORMS PROTECTED UNTIL USE
- REPLACE ANY DEGRADABLE FORMS THAT GET WET PRIOR TO CONCRETE PLACEMENT
- COVER CARTON FORMS WITH A PROTECTIVE BOARD PRIOR TO CONCRETE PLACEMENT
REFERENCES

SAVWAY Carton Forms
http://www.savwaycartonforms.com/

SureVoid Products Inc.
http://www.surevoid.com

VoidForm International Ltd.
http://wwwVOIDFORMINTERNATIONAL.com/

FPA-SC-12 Presentation
http://www.foundationperformance.org/committee_papers.cfm
QUESTIONS?

Download “Specification and Application of Void Spaces Below Concrete Foundations” at:
http://www.foundationperformance.org/committee_papers.cfm