Asphalt Materials, Mix Designs, and Plants

asphalt institute

Asphalt Materials

Danny Gierhart, P.E.
Asphalt Institute Regional Engineer
Tuttle, Oklahoma

HCTRA Engineer Quinton Alberto reported that they have been pleasantly surprised with:

- the ease of construction
- the short time to complete the project
- the aesthetically pleasing appearance of the project
- the performance in rain
- the quieter road noise

Performed a quick and easy noise study this morning (July 10, 2013)

Monitored PC Concrete section over a 5minute period and recorded minimum and maximum readings

Min – 85 dB Max – 96 dB

Digital Sound Level Meter Radio Shack - \$49.99

Monitored Asphalt PFC overlay section over a 5-minute period and recorded minimum and maximum readings

Min – 78 dB Max – 90 dB

min 7 dB lower max 6 dB lower

Digital Sound Level Meter Radio Shack - \$49.99

OSHA Daily Permissible Noise Level Exposure			
Hours per day	Sound level		
8	90dB		
6	92dB		
4	95dB		
3	97dB		
2	100dB		
1.5	102dB		
1	105dB		
.5	110dB		
.25 or less	115dB		

- Cutbacks
- Emulsions
- Asphalt Cement (Binder)

Cutback Asphalt

- Paving asphalt liquefied by blending with petroleum solvents
- Resulting material can be sprayed/mixed at lower temperatures
- Primary uses:
 - penetrating prime coat
 - binders for storable cold mix asphalt

Types of Cutback Asphalt

asphalt institute

Rapid Medium Slow
Curing (RC) Curing (MC) Curing (SC)
ASTM D 2028 ASTM D 2027 ASTM D 2026

Gasoline Kerosene Diesel or **Naphtha Asphalt Asphalt Asphalt**

Grades of Cutback Asphalt

asphalt institute

Asphalt Emulsions

- Microscopic asphalt droplets suspended in water.
- Mostly 1-5 μm diameter
- Emulsifiers or surfactants hold these droplets in suspension.

- The purpose of diluting the binder with water is to lower the viscosity.
- This allows the emulsion to be shot onto the roadway surface at much lower temperatures than straight binder.
- If the emulsifying agent causes the particles to bear a negative charge, the emulsion is said to be *anionic*.
- If the emulsifying agent causes the particles to bear a positive charge, the emulsion is said to be *cationic*.

Asphalt Emulsions

asphalt institute

The process in which the binder globules begin to coalesce and the water evaporates is called *breaking*.

The amount of binder left after the water evaporates is called the *residual asphalt*.

The residual asphalt is expressed as a percentage of the emulsion.

Both the amount and type of water and emulsifying agent mixed with the binder affect the evaporation rate.

Emulsion

"Un-broken" emulsion is brown

"Broken" emulsion is black

RS (Rapid Setting)

MS (Medium Setting)

SS (Slow Setting)

Positively- Charged Emulsions are also classified into 3 types

CRS (Rapid Setting)

CMS (Medium Setting)

CSS (Slow Setting)

- QS = Quick Set
- **HF** = **High** Float
- 1 = Binder residue = 60% Minimum
- 2 = Binder Residue = 65% Minimum
- h = Hard Pen Asphalt Base
- s = Soft Pen Asphalt Base or sometimes Solvent
- I and/or p = Latex and/or Polymer

Asphalt Emulsions

asphalt institute

Anionic emulsions (negatively charged) typically bond best with positively charged aggregates (limestones, dolomites).

Cationic emulsions (positively charged) typically bond best with negatively charged aggregates (granites, sandstones).

Asphalt Emulsions

Emulsions are further separated into different grades depending on various factors including viscosity, base asphalt type, and amount of residual asphalt.

The most common uses of emulsions are for chip seals, tack coats, and fog seals.

Asphalt Binders

The term "binder" covers both neat (unmodified) and modified asphalt cements, but doesn't include emulsions and cutbacks.

Binders are the "glue" that holds the aggregate together in HMA.

Unlike emulsions and cutbacks, binders are typically required to be heated to over 300°F for use, unless modified for use as Warm Mix Asphalt (WMA).

Polymers can be added to the binder to enhance their high temperature performance.

Superpave Asphalt Binder Specifications

asphalt institute

The grading system is based on Climate

High Temperature @ 98% Reliability

asphalt institute

Low Temperature @ 98% Reliability

asphalt institute

PG Binder Grades

PG 64-22 Probably Unmodified PG 70-28 Probably Modified

Asphalt Description and Sources asphalt institute

Asphalt Cement or Asphalt Binder

- Black, cementitious, waterproof material
- Originally mined from a natural lake (still operating today: Lake Asphalt of Trinidad and Tobago)
- Most asphalt today comes from the refining process

Not All Crudes Are The Same

asphalt institute

Source

- Continents, Countries, States, Fields
- Blends
- Viscosity
 - Heavy, Medium, & Light
- Asphaltenes
 - Content, Size, Polarity
- Sulfur
 - Sweet, sour

Not All Crudes Are The Same

asphalt institute

- Temperature
- Time of Loading
- Aging (properties change with time)

Asphalt Behavior at Varying Temperatures

asphalt institute

Temperature

Time of Loading

asphalt institute

Asphalt aging over the pavement life

asphalt institute

High Temperature Behavior

- High in-service temperature
 - Desert climates
 - Summer temperatures
- Sustained loads
 - Slow moving trucks
 - Intersections

Low Temperature Behavior

- Low Temperature
 - Cold climates
 - Winter
- Rapid Loads
 - Fast moving trucks

- Low stiffness at construction temperature
- High stiffness at high in-service temperature
- Low stiffness at low in-service temperature
- Excellent long-term durability

Polymer-modified Asphalt Binder

asphalt institute

General Performance

Temperature

mage courtesy Infrapave

- Elastomers
- Plastomers
- Combinations

poly • mer

"many parts"

mage courtesy Injectec.com

- Natural Latex Rubber
- Synthetic Latex
 - Styrene-butadiene (SB)
- Block Copolymer
 - Styrene-butadienestyrene (SBS)
- Reclaimed Rubber

Plastomers

- Polyethylene
- Polypropylene
- Ethyl-vinyl-acetate (EVA)
- Polyvinyl-chloride (PVC)

EVA is a plastic that is used to create stiffer insoles for your shoes

Image courtesy cyclingfitness.com

Quantifying the Effects of PMA for Reducing Pavement Distress | Compared to the compared to t

This study (published in Feb 2005) used national field data to determine enhanced service life of pavements containing polymer modified binders versus conventional binders. The data is from a variety of climates and traffic volumes within North America.

Direct Comparisons – Rutting asphalt institute

Distress Comparisons – Transverse Cracking

Distress Comparisons – Fatigue Cracking

When would a polymer-modified asphalt typically be used?

AASHTO M 323 - Table 1

	Adjustment to High-Temp Grade			
	Traffic Load Rate			
ESALs (M)	Standing	Slow	Standard	
< 0.3	-	-	-	
0.3 - < 3	2	1	-	
3 - < 10	2	1	-	
10 - < 30	2	1	-	
≥ 30	2	1	1	

^{*} TxDOT guidance very similar, but less structured

Questions?

