Forensic Engineering = Detective Engineering

David W. Fowler

The University of Texas at Austin © 2013

Qualifications of Forensic Engineer

- Expert in subject under investigation
 - Formal education
 - Experience
 - Licensed engineer
 - Active in technical societies
- Fair, impartial, and ethical
 - Truthful
 - Objective
 - Avoid conflict of interest

Must like to be a detective

- Detective: "someone whose job is to discover information about crimes and find out who is responsible for them" (Cambridge Learner's Dictionary)
- You have to be able to think outside the box
- You have to enjoy digging for the truth
- Must be a good communicator
 - Reports and presentations to clients and to judicial forums

So if you want to be an engineering Sherlock Holmes, let's go further.

Failure

General Definitions

- Inability of a component, structure or facility to perform its intended function
- Note: Failure does not necessarily involve collapse or rupture

Concrete Floor Failure

Scientific Method of Determining Cause

- State the problem
- Perform observations
- Formulate hypotheses as to cause of problem
- Test the hypothesis by observation, analysis, physical test, etc.
- Analyze the results
- Make final conclusions

Forensic Engineer in Court

- Less than 10% of cases in U.S. go to trial
- Most cases settle after the lawyers make a lot of money
- For cases going to trial, the forensic engineer plays a major role

Let's look at some basics

- Volume change in materials is very important
- How does it affect cracking?

Cause of Concrete Cracks

 Concrete is very strong in compression
 -28-day compressive strength ranges from about 3000 psi to over 10,000 psi

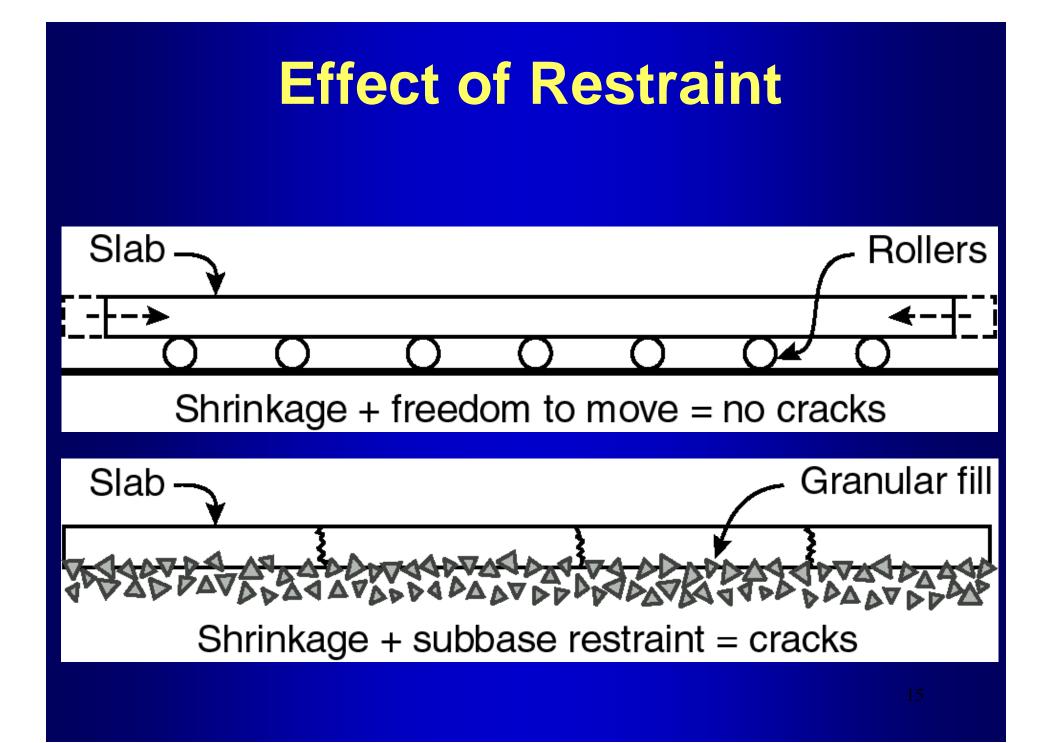
But it is weak in tension

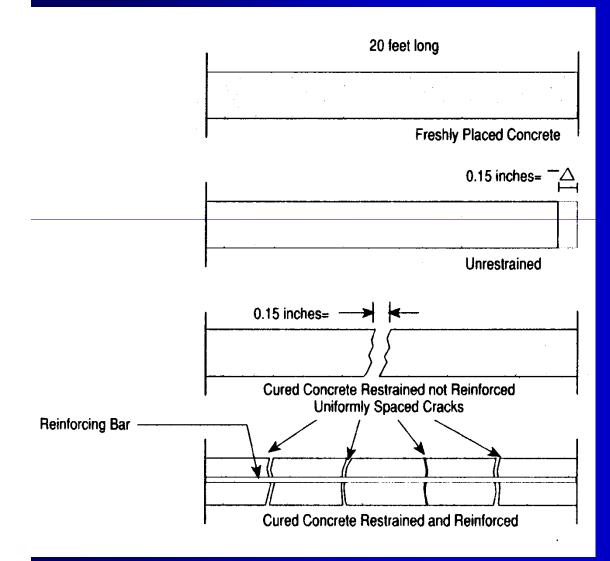
 Tensile capacity is about 10% of its compressive strength

Source of Tension in Concrete

- External or "Structural" Sources
 - Gravity loads
 - Lateral loads
 - Loads from subgrade settlement or swelling
- "Internal" Mechanisms
 - Volume change restraint due to temperature changes or drying shrinkage
 - Expansion due to corrosion of reinforcing steel or deleterious chemical reactions

What Causes Volume Change?


- Temperature change
- Moisture change
- Chemical reactions
 - Reactive aggregates
 - Corrosion


Do all volume changes cause cracking?

- When moisture or thermal effects cause a reduction in volume and there is restraint, cracking is likely
- When moisture or thermal effects cause increase in volume and there is restraint, spalling is possible
- When internal reactions, e.g. ASR or corrosion, occur, cracking is likely

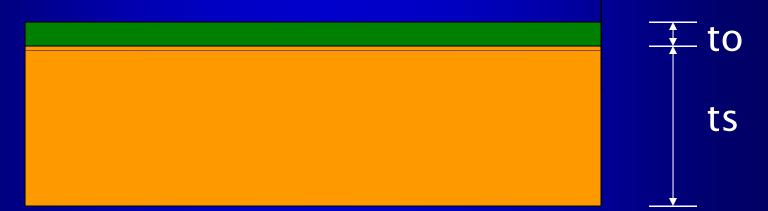
Restraint is the key to cracking

No restraint, no cracking

Example of **Drying Shrinkage** Slab length = 20 feet (6m) Drying shrinkage = 600 microstrain Shrinkage of slab = 0.0006 x 20' x 12"/' = 0.15 inches (6 mm)

Properly Designed Joints

Crack at Control Joint

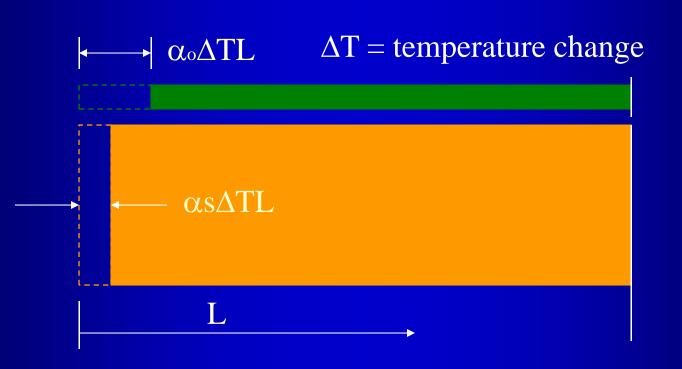


Stresses in overlays

• Again, no restraint, no cracking

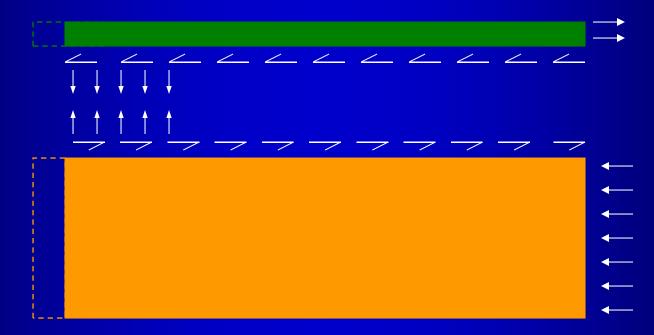
Stress Condition

No temperature change = no stress



Overlay bonded to slab

 $\alpha o > \alpha s$


Temperature decrease – no bond

No restraint – no stress

Stress Condition

Temperature decrease – bond

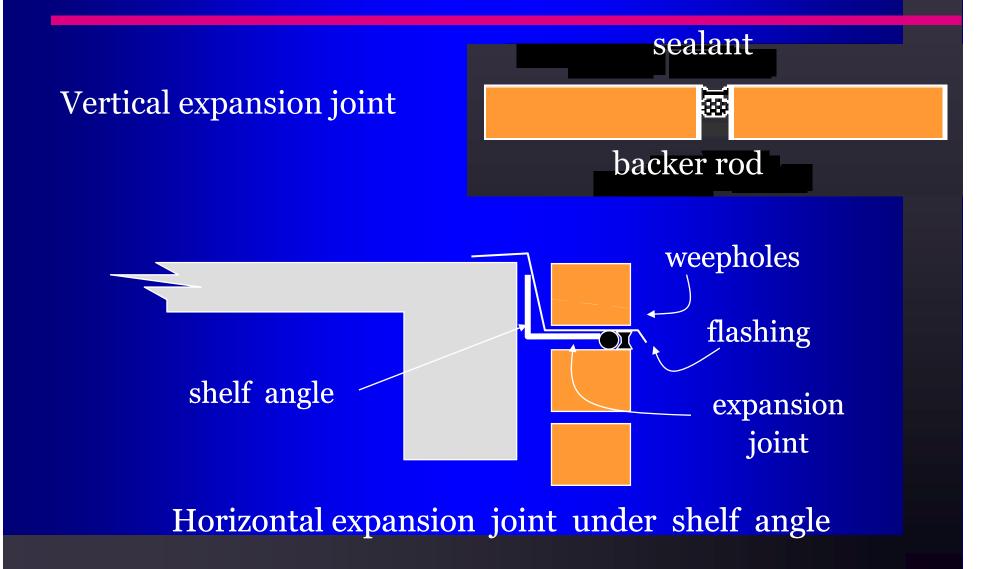
Restraint due to bond results in stresses at interface and axial stresses

- An owner's worst nightmare!
- Delamination of a PC overlay
- Entire overlay was replaced
- Cause? An excessively thick bonding coat of resin which had a very high coefficient of thermal expansion.

Spalling in concrete pavements thermal expansion and contraction ts

Why are jointed pavements used?

Masonry

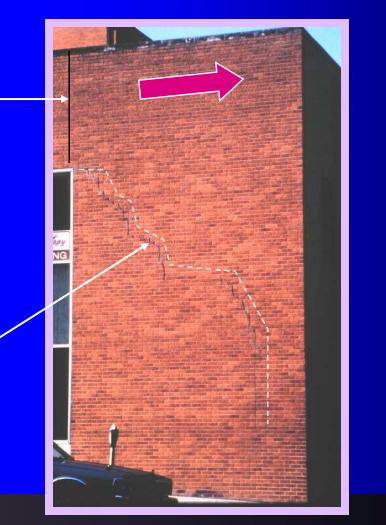

- Brick masonry expands due to moisture
- Baked in kilns at over 2300F
- Absorbs moisture and expands
- Also expands due to thermal effects
- Concrete, on the other hand, shrinks from the time it comes out of the forms unless it is exposed to moisture.

Buckled Masonry

Absence of an expansion joint under shelf angle may cause compression of masonry that can lead to buckling, local spalling of masonry, and collapse of entire panel.

Clayford T Grimm PE Inc

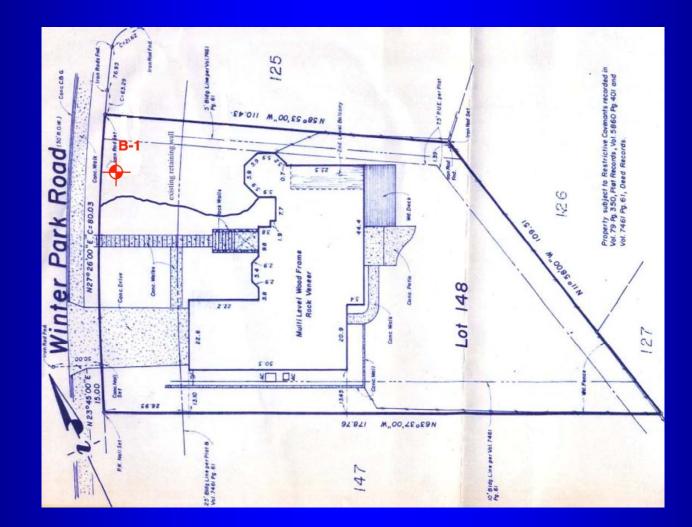
Expansion Joints


Expansion of Brick Masonry Spandrel

How To Prevent A Shear Crack

Expansion joint should have been placed here.

Absence of expansion joint caused shear crack.


Foundation Case Studies

Austin Residence



Shasta Gibbs Final Project Concrete Repair Dr. David Fowler 8 May 2013

Site Plan

Sloping lot

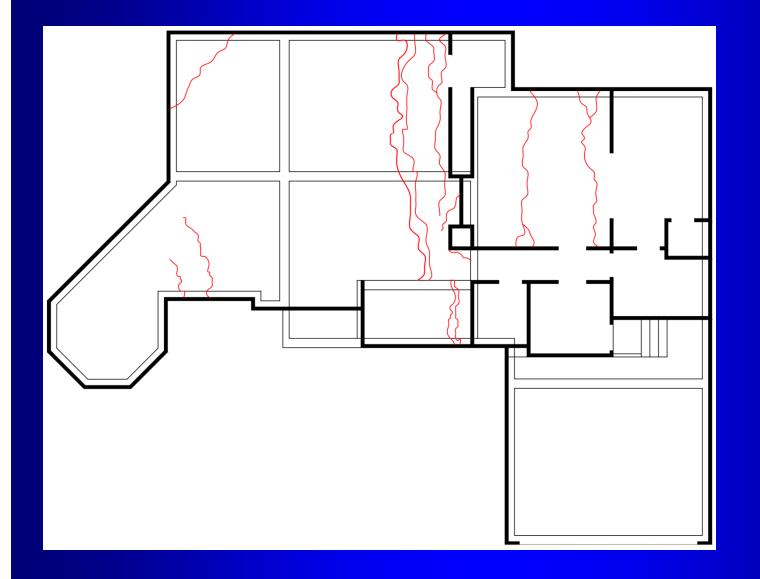
Failed Foundation

*Original drilled piers *Pressed Piles

Exterior *Foundation cracks

Interior

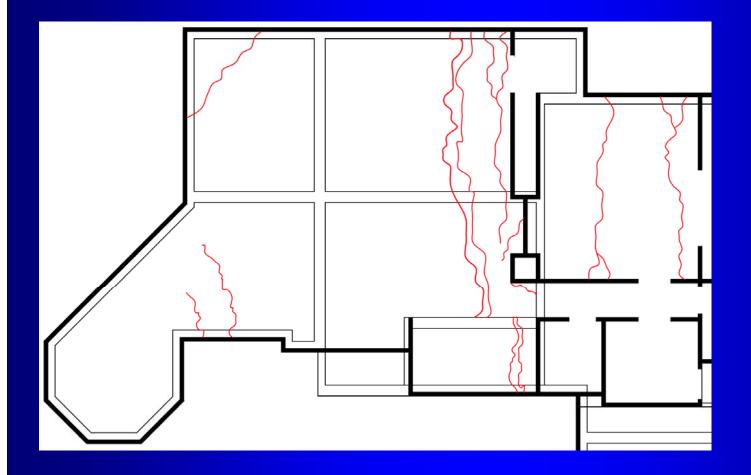
*Cracks in slab *Drywall separation *Drywall shear cracks at window and door corners *Relative floor elevation


Failed Foundation

*Original drilled piers *Pressed Piles

Exterior *Foundation cracks

Interior


*Cracks in slab *Drywall separation *Drywall shear cracks at window and door corners *Relative floor elevation

*Original drilled piers *Pressed Piles

Exterior *Foundation cracks

Interior

*Original drilled piers *Pressed Piles

Exterior

*Foundation cracks

Interior

*Original drilled piers *Pressed Piles

Exterior *Foundation cracks

Interior

*Original drilled piers *Pressed Piles

Exterior *Foundation cracks

Interior

*Original drilled piers *Pressed Piles

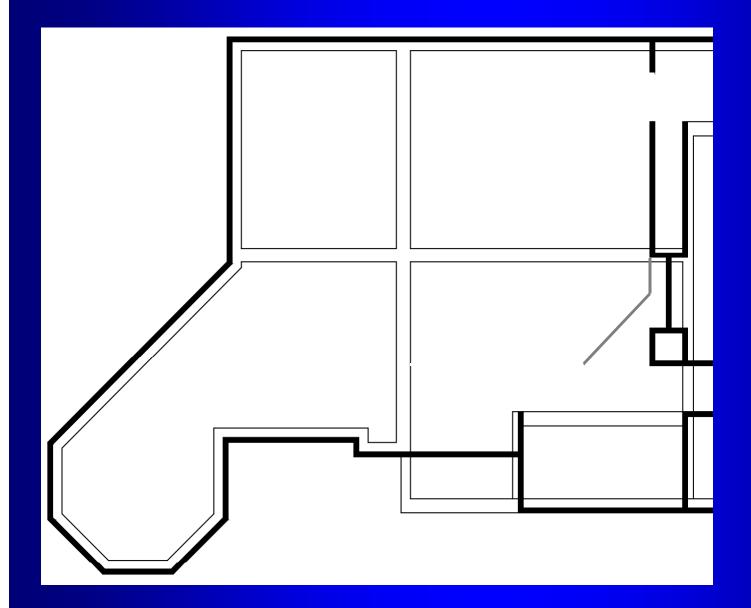
Exterior *Foundation cracks

Interior

*Original drilled piers *Pressed Piles

Exterior *Foundation cracks

Interior


*Original drilled piers *Pressed Piles

Exterior *Foundation cracks

Interior

*Cracks in slab *Drywall separation *Drywall shear cracks at window and door corners

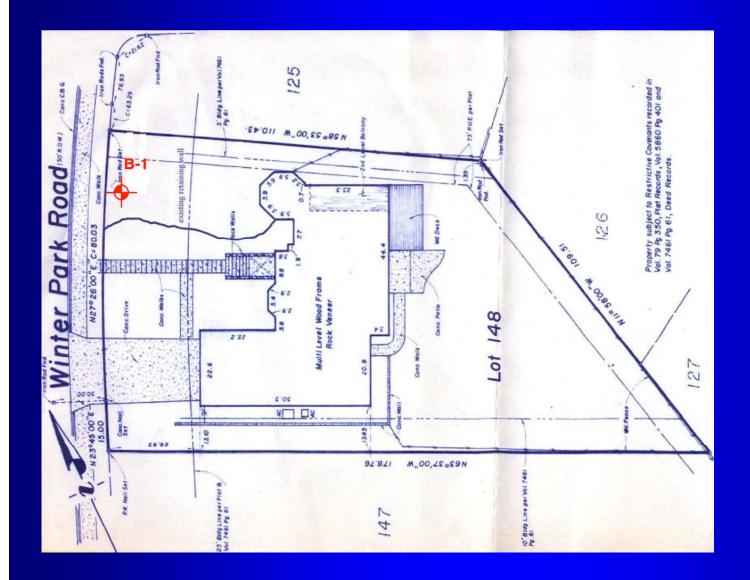
*Relative floor elevation

*Original drilled piers *Pressed Piles

Exterior

*Foundation cracks

Interior


*Cracks in slab *Drywall separation *Drywall shear cracks at window and door corners

*Relative floor elevation

GEOTECHNICAL REPORT

*Location *Soil Profile *Boring Log

Soil Boring

*Location *Soil Profile *Boring Log

Description	Approximate Depth Range of Stratum (feet)	Material Encountered	Consistency/Density			
Stratum I ¹	0 to 2	Brown Lean Clay (CL)	Medium Stiff			
Stratum II ²	2 to 25	Tan to Light Gray to Light Brown Fat Clay (CH)	Stiff to Hard			

^{1.} The Stratum I possible fill soils exhibited moderate shrink/swell potential as indicated by a measured plasticity index (PI) of about 19 percent. An in-situ moisture content was about 9 percent wet of the corresponding plastic limit. A pocket penetrometer value of about 0.5 tons per square foot (tsf) and a measured unconfined compressive strength of about 0.77 tsf were recorded for the stratum.

^{2.} The Stratum II tan to light gray to light brown soils exhibited high shrink/swell potential as indicated by measured PI's of about 38 and 39 percent. In-situ moisture contents were about equivalent and 3 percent wet of the corresponding plastic limits. Pocket penetrometer values ranging from about 1.0 to 4.5 tsf and measured unconfined compressive strengths ranging from about 1.52 to 4.3 tsf were recorded for the stratum.

Soil Boring

*Location *Soil Profile *Boring Log

	B	ORING LOG	NO	. B-	1					Page	1 of 1	
PROJECT: Kiguchi Residence Improvements CLIENT: Dr. Koru Kiguchi, M.D., PhD Austin, TX												
SIT	E: 1805 Winter Park Road Austin, Texas				.,							
GRAPHIC LOG	LOCATION See Exhibit A-2		DEPTH (ft)	WATER LEVEL OBSERVATIONS SAMPLE TYPE	FIELD TEST RESULTS	TEST TYPE	STRENGTH H	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	ATTERBERG LIMITS	
	DEPTH LEAN CLAY (CL) Medium stiff, brown (Possible Fill)			-00	0.5 tsf (HP)	UC	0.77 (tsf)	9.5	24	107	34-15-19	
	2.0 FAT CLAY (CH) Stiff, tan to light gray to light brown, with trace calcu	areous nodules			1.0 tsf (HP)	UC	1.52 (tsf)	8.8	21	107		
	-very stiff to hard below 4 feet		5 -		3.0 tsf (HP)				20		58-20-38	
					2.5 tsf (HP)	UC	1.89 (tsf)	9.6	23	103		
			10 -		4.5 tsf (HP)				20			
			15 -		4.5 tsf (HP)	UC	2.57 (tsf)	5	23	107	59-20-39	
			_									
					4.5 tsf (HP)				22			
			20 -									
			_		4.5 tsf (HP)	UC	4.30 (tsf)	4.1	20	111		
	25.0 Boring Terminated at 25 Feet		25 -									
	Stratification lines are approximate. In-situ, the transition may be gra	dual.			Hammer Ty	pe: Auto	matic					
Dry /	Se and and Se Se	e Exhibit A-3 for description of e Appendix B for description of d additional data, (if any). e Appendix C for explanation of previations.	laborator	ry proced	Notes:							
	WATER LEVEL OBSERVATIONS	76			Boring St	arted: 2/2	22/2012		Borir	g Comple	ted: 2/22/2012	
	No free water observed			JL	Drill Rig:	Drill Rig: CME 75				Driller: Core Tech Drilling, Inc.		

Soil Boring *Location *Soil Profile

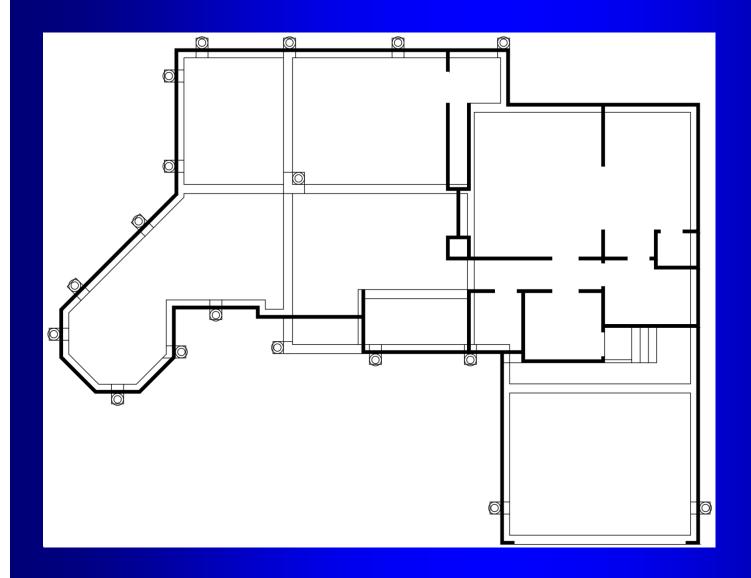
*Boring Log

					_					
g	LOCATION See Exhibit A-2			1	STRENGTH TEST					ATTERBERG LIMITS
GRAPHIC LOG	рертн	DEPTH (ft)	WATER LEVEL OBSERVATIONS	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI
	LEAN CLAY (CL) Medium stiff, brown (Possible Fill) 2.0			0.5 tsf (HP)	UC	0.77 (tsf)	9.5	24	107	34-15-19
	FAT CLAY (CH) Stiff, tan to light gray to light brown, with trace calcareous nodules	_		1.0 tsf (HP)	UC	1.52 (tsf)	8.8	21	107	
	-very stiff to hard below 4 feet	5 -	-	3.0 tsf (HP)				20		58-20-38
		_		2.5 tsf (HP)	UC	1.89 (tsf)	9.6	23	103	
				4.5 tsf (HP)				20		
				4.5 tsf (HP)	UC	2.57 (tsf)	5	23	107	59-20-39
		-		4.5 tsf (HP)				22		
		20 -	1 [

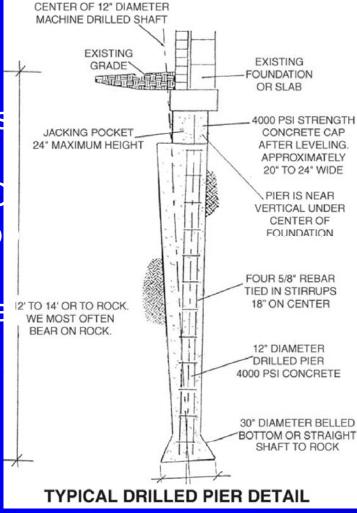
Soil Boring

*Location *Soil Profile *Boring Log

4.2.1 Drilled and Underreamed Pier Foundation System

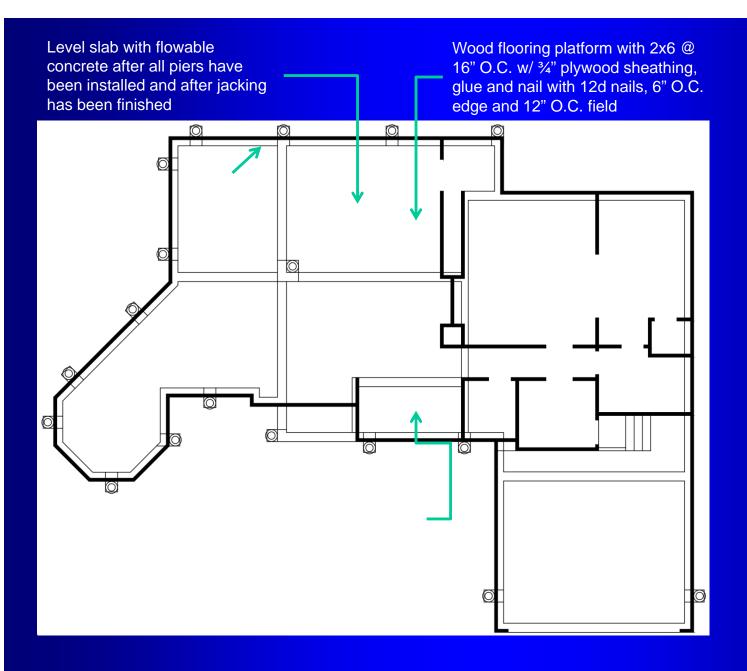

Description	Drilled and Underreamed Pier Design Parameter							
Minimum embedment into bearing stratum ¹	18 feet below existing grades (natural grade at the time of our field program) and at least 15 feet below FFE, whichever is deeper							
Bearing Pressures (allowable) ²	Net dead plus sustained live load – 6,000 psf							
bearing Pressures (anowable)	Net total load – 9,000 psf							
Ratio of Underream Diameter to Shaft Diameter ³	2:1 to 3:1							
Estimated uplift force ^{4,5,6}	75*D							
Minimum percentage of steel	0.5 percent							
Approximate total settlement 7,8	1 inch or less							
Estimated differential settlement 7,8	Approximately 1/2 to 3/4 of total settlement							

Soil Boring


*Location *Soil Profile *Boring Log

REPAIR SOLUTION

Repair Solution



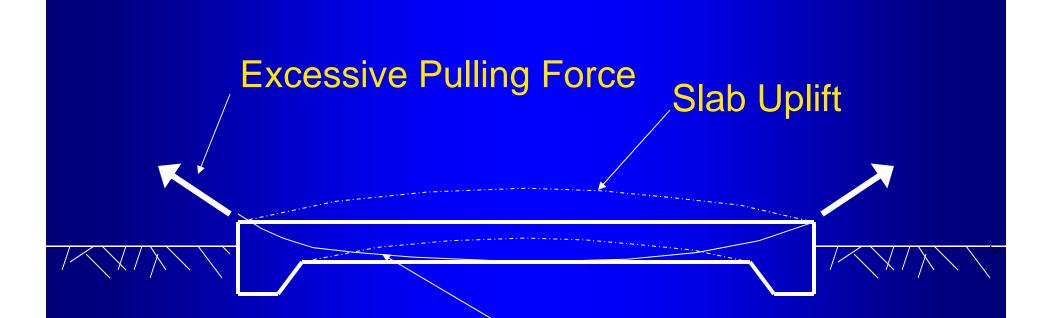
- Rests 18 feet below grade, drilled at an angle
- 14" pier diameter
- 36" bell diameter
- 2' bearing corbel
- (6) #5 longitudinal s bars
- #3 stirrups @ 12" C
 - (2) stirrups at to and bottom of longitudinal stee

Repair Solution *Pier Design *Additional Repairs

*Pier Construction

Apartment

- Two-story apartment rock veneered apartment
- Less than a year after it was repair with pressed piles it exhibited over 4 inches of settlement.
- The following photos show what they found when they exhumed the foundation.



Paper cup formed the tip

Other foundation failures...

Excessive Cable Drape

Potential Problems with Post-tensioned Slabs

Exposed Cable—Poor Construction/Inspection

- Failure to maintain void beneath suspended slabs and beams
- Failure to provide adequate drainage around foundation

Test Pit #1: Two carton forms. Inside collapsed. Outside left 3.5" concrete in contact with clay.

Test Pit #3, no void, carton form collapsed.

Summary

- Many causes of concrete distress and foundation problems
- But not all is bad news
- This provides us with a life time annuity